Paired Associative Stimulation with High-Frequency Peripheral Component Leads to Enhancement of Corticospinal Transmission at Wide Range of Interstimulus Intervals
نویسندگان
چکیده
Background: In spinal paired associative stimulation (PAS), orthodromic and antidromic volleys elicited by transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS) coincide at corticomotoneuronal synapses at the spinal cord. The interstimulus interval (ISI) between TMS and PNS determines whether PAS leads to motor-evoked potential (MEP) potentiation or depression. PAS applied as a long-term treatment for neurological patients might alter conduction of neural fibers over time. Moreover, measurements of motoneuron conductance for determination of ISIs may be challenging in these patients. Results: We sought to design a PAS protocol to induce MEP potentiation at wide range of ISIs. We tested PAS consisting of high-intensity (100% stimulator output, SO) TMS and high-frequency (50 Hz) PNS in five subjects at five different ISIs. Our protocol induced potentiation of MEP amplitudes in all subjects at all tested intervals. TMS and PNS alone did not result in MEP potentiation. The variant of PAS protocol described here does not require exact adjustment of ISIs in order to achieve effective potentiation of MEPs. Conclusions: This variant of PAS might be feasible as a long-term treatment in rehabilitation of neurological patients.
منابع مشابه
Role of sustained excitability of the leg motor cortex after transcranial magnetic stimulation in associative plasticity.
Changes in the strength of corticospinal projections to muscles in the upper and lower limbs are induced in conscious humans after paired associative stimulation (PAS) to the motor cortex. We tested whether an intervention of PAS consisting of 90 low-frequency (0.1-Hz) stimuli to the common peroneal nerve combined with suprathreshold transcranial magnetic stimulation (TMS) produces specific cha...
متن کاملThe use of F-response in defining interstimulus intervals appropriate for LTP-like plasticity induction in lower limb spinal paired associative stimulation.
BACKGROUND In spinal paired associative stimulation (PAS), orthodromic volleys are induced by transcranial magnetic stimulation (TMS) in upper motor neurons, and antidromic volleys by peripheral nerve stimulation (PNS) in lower motor neurons of human corticospinal tract. The volleys arriving synchronously to the corticomotoneuronal synapses induce spike time-dependent plasticity in the spinal c...
متن کاملFailure of spinal paired associative stimulation to induce neuroplasticity in the human corticospinal tract.
CONTEXT/OBJECTIVE Paired associative stimulation (PAS) involves paired-stimulation pulses at both the head (via transcranial magnetic stimulation) and the periphery (via peripheral nerve stimulation). The purpose of PAS, when applied to the spinal cord, is to induce neuroplasticity and upregulate the corticospinal tract leading to effector muscles. While limited research has suggested that it i...
متن کاملVoluntary motor output is altered by spike-timing-dependent changes in the human corticospinal pathway.
Repeated pairs of timed presynaptic and postsynaptic potentials cause lasting changes in efficacy of transmission at many synapses. The corticospinal tract is the major pathway controlling voluntary movement in humans, and corticospinal neurons have monosynaptic connections to motoneurons of many muscles. We hypothesized that corticospinal transmission in humans could be altered by delivering, ...
متن کاملCortical Plasticity Induced by Transcranial Magnetic Stimulation during Wakefulness Affects Electroencephalogram Activity during Sleep
BACKGROUND Sleep electroencephalogram (EEG) brain oscillations in the low-frequency range show local signs of homeostatic regulation after learning. Such increases and decreases of slow wave activity are limited to the cortical regions involved in specific task performance during wakefulness. Here, we test the hypothesis that reorganization of motor cortex produced by long-term potentiation (LT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016